Exponential-Krylov methods for ordinary differential equations

نویسندگان

  • Paul Tranquilli
  • Adrian Sandu
چکیده

This paper develops a new class of exponential-type integrators where all the matrix exponentiations are performed in a single Krylov space of low dimension. The new family, called Lightly Implicit KrylovExponential (LIKE), is well suited for solving large scale systems of ODEs or semi-discrete PDEs. The time discretization and the Krylov space approximation are treated as a single computational process, and the Krylov space properties are an integral part of the new LIKE order condition theory developed herein. Consequently, LIKE methods require a small number of basis vectors determined solely by the temporal order of accuracy. The subspace size is independent of the ODE under consideration, and there is no need to monitor the errors in linear system solutions at each stage. Numerical results illustrate the favorable properties of new family of methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator

In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately project the exponential operator onto a small Krylov subspace and carry out the resulting small exponential matr...

متن کامل

Krylov subspace exponential time domain solution of Maxwell's equations in photonic crystal modeling

The exponential time integration, i.e., time integrationwhich involves thematrix exponential, is an attractive tool for time domain modeling involving Maxwell’s equations. However, its application in practice often requires a substantial knowledge of numerical linear algebra algorithms, such as Krylov subspace methods. In this note we discuss exponential Krylov subspace time integrationmethods ...

متن کامل

A short course on exponential integrators

This paper contains a short course on the construction, analysis , and implementation of exponential integrators for time dependent partial differential equations. A much more detailed recent review can be found in Hochbruck and Ostermann (2010). Here, we restrict ourselves to one-step methods for autonomous problems. A basic principle for the construction of exponential integra-tors is the lin...

متن کامل

Weighted Quadrature in Krylov Methods

The Krylov subspace approximation techniques described by Gallopoulos and Saad 2] for the numerical solution of parabolic partial diierential equations are extended. By combining the weighted quadrature methods of Lawson and Swayne 6] with Krylov subspace approximations, three major improvements are made. First, problems with time-dependent sources or boundary conditions may be solved more eeci...

متن کامل

A short guide to exponential Krylov subspace time integration for Maxwell’s equationsI

The exponential time integration, i.e., time integration which involves the matrix exponential, is an attractive tool for solving Maxwell’s equations in time. However, its application in practice often requires a substantial knowledge of numerical linear algebra algorithms, in particular, of the Krylov subspace methods. This note provides a brief guide on how to apply exponential Krylov subspac...

متن کامل

Matrix exponential and Krylov subspaces for fast time domain computations: recent advances

By using the matrix exponential operator, solution of the system can be written as y(t) = exp(−tA)v. Numerical algorithms, which are based on this approach, are called exponential time integration methods. The essential point is that not the matrix exponential itself but rather its action on the vector v is computed. An attractive feature of the formula y(t) = exp(−tA)v is that it provides solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 278  شماره 

صفحات  -

تاریخ انتشار 2014